Multidisciplinary Workflow applied to Multiple Stage Hydraulic Fracturing of Horizontal Wellbores: Evolving the Process in the Lebada Field, Black Sea

Rodica Cataraiani, Petrom, Radu Iosif, Petrom, Alexandru Dragomir, Petrom, Daniel Perez, Schlumberger, Rafik Belhaouas, Schlumberger, Emmanuel Bize, Schlumberger, Carlos Webel, Schlumberger

ROMANIA UPSTREAM CONFERENCE, March 24th 2011
Agenda

- Why is reservoir contact important?
- Lebada Fields Offshore Black Sea
- Evolution of the Completion Process
- Offshore Multi-frac Completion Challenges
- Horizontal Multi-frac Completion Solutions
- Production Results
- Conclusions
Why is reservoir contact important?

- Single stage vertical well frac vs. horizontal well multiple stage fracturing

Maximize reservoir contact
- Increase recoverable reserves
- Increase production
Lebada Fields Offshore Black Sea

- Cretaceous age: carbonate/shale/sand
- Oil and gas reservoir
- Permeability: 0.001 to 2 mD
- TVD: 2,000 m
- BHST: 93 degC
- Producing since early 90’s
Evolution of the Completion Process

Conventional Completion

- Vertical Wells
- Cemented and Perforated Liner
- No Stimulation Applied
- Economics depended purely on good reservoir quality and oil prices
Evolution of the Completion Process

Matrix Stimulation
- Platform pumps and equipment
- Retarded and non-retarded HCl acid based system
- 2-3 fold production increase, fast production decline
Evolution of the Completion Process

Conventional Completion

- Land based equipment placed on platform and boat deck
- Single stage prop fracturing with polymer based fracturing fluids
- Up to 6 fold production increase yet short term production results

Matrix Stimulation

Hydraulic Fracturing

- Land based equipment placed on platform and boat deck
- Single stage prop fracturing with polymer based fracturing fluids
- Up to 6 fold production increase yet short term production results

Technical Limit Reached
Evolution of the Completion Process

Conventional Completion
Matrix Stimulation
Hydraulic Fracturing
Hz Multistage Fracturing

Reservoir
Surface
Vertical Wells
Horizontal Wells
Evolution of the Completion Process

- Conventional Completion
- Matrix Stimulation
- Hydraulic Fracturing
- Hz Multistage Fracturing
- Hz Massive Fracturing

5 or more stages in a single well
Offshore Hz Multi-frac Completion Challenges

Drilling Optimization
- Stay on target
- Minimize severe dog legs
- Optimize ROP

Multi-service Coordination
- Integration of MWL, LWD, WL data
- SLB-Client interface management
- Fast response data analysis

Completion Process
- Selection of the right completion system
- Data acquisition & analysis
- Formation Characterization

Fracturing Process
- Hydraulic Fracture Modeling
- Design & Pumping Schedules
- Offshore fracturing logistics
Horizontal Multi-frac Completion Solutions

Completion Optimization

Selection of the right completion system

OPEN HOLE FRAC SYSTEM:
- Up to 6 frac stages
- Full wellbore access
- Re-closable & mill-able frac ports
- Flexible packers positioning
- Continuous operation
Completion Optimization

Selection of the right completion system

Data acquisition & analysis

Model Setup → Real Time Data LWD or WL → Quality Control

Interpretation

- Petrophysic
- Borehole Geology
- Sonic
Horizontal Multi-frac Completion Solutions

Completion Optimization

Selection of the right completion system

Data acquisition & analysis

Formation Characterization

DETAILED OUTPUTS

- Lithology
- Fluids Saturation
- Porosity
- Permeability
- Wellbore Shape
- Faults & Fractures
- Stress Profile
- Static YM & PR
- Fraccability
Horizontal Multi-frac Completion Solutions

Fracturing Process

Hydraulic Fracture Modeling

KEY FACTORS:
- Initiation point
- Frac length
- Conductivity
- Height growth containment
Horizontal Multi-frac Completion Solutions

Fracturing Process

Hydraulic fracture monitoring

Design & Pumping Schedules

KEY FRACTORS:

- Polymer free fluid
- On-the-fly mixing
- Fluid rheology
- Proppant transport
- Proppant flow back control
- Fluid leak-off
- Material balance
- Frac fluids flow back

<table>
<thead>
<tr>
<th>Stage</th>
<th>Pump Rate (m³/min)</th>
<th>Fluid #</th>
<th>Fluid Name</th>
<th>Gel Conc. (lb/mgal)</th>
<th>Fluid Volume (m³)</th>
<th>Prop. #</th>
<th>Prop. Conc. (PFA)</th>
<th>Prop. Mass (kg)</th>
<th>Slurry Volume (m³)</th>
<th>Pump Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.2</td>
<td>4</td>
<td>Pre-Flush</td>
<td>0.0</td>
<td>40</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>40.0</td>
<td>12.5</td>
</tr>
<tr>
<td>2</td>
<td>3.2</td>
<td>3</td>
<td>ClearFRAC XT 40-P</td>
<td>0.0</td>
<td>110</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>110.0</td>
<td>34.4</td>
</tr>
<tr>
<td>3</td>
<td>1.0 PPA</td>
<td>2</td>
<td>ClearFRAC XT 40</td>
<td>0.0</td>
<td>20</td>
<td>3</td>
<td>1.00</td>
<td>2397</td>
<td>20.9</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>2.0 PPA</td>
<td>2</td>
<td>ClearFRAC XT 40</td>
<td>0.0</td>
<td>20</td>
<td>3</td>
<td>2.00</td>
<td>4793</td>
<td>21.8</td>
<td>6.8</td>
</tr>
<tr>
<td>5</td>
<td>3.0 PPA</td>
<td>2</td>
<td>ClearFRAC XT 40</td>
<td>0.0</td>
<td>25</td>
<td>3</td>
<td>3.00</td>
<td>8987</td>
<td>28.3</td>
<td>8.8</td>
</tr>
<tr>
<td>6</td>
<td>4.0 PPA</td>
<td>2</td>
<td>ClearFRAC XT 40</td>
<td>0.0</td>
<td>30</td>
<td>3</td>
<td>4.00</td>
<td>14379</td>
<td>35.3</td>
<td>11.0</td>
</tr>
<tr>
<td>7</td>
<td>5.0 PPA</td>
<td>2</td>
<td>ClearFRAC XT 40</td>
<td>0.0</td>
<td>35</td>
<td>3</td>
<td>5.00</td>
<td>20970</td>
<td>42.7</td>
<td>13.3</td>
</tr>
<tr>
<td>8</td>
<td>5.0 PPA</td>
<td>2</td>
<td>ClearFRAC XT 40</td>
<td>0.0</td>
<td>30</td>
<td>2</td>
<td>5.00</td>
<td>19080</td>
<td>36.8</td>
<td>11.5</td>
</tr>
<tr>
<td>9</td>
<td>3.2</td>
<td>3</td>
<td>ClearFRAC XT 40-P</td>
<td>0.0</td>
<td>28</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>27.8</td>
<td>8.7</td>
</tr>
</tbody>
</table>

15
Horizontal Multi-frac Completion Solutions

- Over 400 Tons of proppant
- Over 100 m³ of chemicals
- All loaded in vessel for single trip
Production Results

To date the described workflow for OH Multi-stage frac has been applied in 5 wells in the Black Sea:

<table>
<thead>
<tr>
<th>Well Name</th>
<th>Date</th>
<th>Number of stages</th>
<th>1st Month Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well #1 – New well</td>
<td>June 2008</td>
<td>3 Fracs</td>
<td>80 Tons/day</td>
</tr>
<tr>
<td>Well #2 – New well</td>
<td>August 2009</td>
<td>3 Fracs</td>
<td>95 Tons/day</td>
</tr>
<tr>
<td>Well #3 – Re-entry</td>
<td>March 2010</td>
<td>5 Fracs</td>
<td>60 Tons/day</td>
</tr>
<tr>
<td>Well #4 – Re-entry</td>
<td>March 2010</td>
<td>5 Fracs</td>
<td>30 Tons/day</td>
</tr>
<tr>
<td>Well #5 – New well</td>
<td>April 2010</td>
<td>6 Fracs</td>
<td>120 Tons/day</td>
</tr>
</tbody>
</table>
Conclusions

- Lebada Field *completion process continues to evolve* to reduce the cost/bbl

- **Massive multi-stage fracturing** is now a reality in the Black Sea

- *Image and sonic logs interpretation are key* for the completion and frac placement

- The *Multidisciplinary workflow and methodology is crucial* for the completion success

- Multi-stage Hz completions proven to provide **much better economics** than previous approach.
Thanks!